EXERCICE 1A.1

On considère la suite (u_n) définie par le terme général $u_n=3n-7$. Déterminer les termes suivants

<i>u</i> ₀	u_1	u_2	u_3	u_4	<i>u</i> ₅	<i>u</i> ₆	<i>u</i> ₇

EXERCICE 1A.2

On considère la suite (u_n) définie par le terme général $u_n=2^n$. Déterminer les termes suivants

u_0	u_1	u_2	u_3	u_4	u_5	<i>u</i> ₆	u_7

EXERCICE 1A.3

On considère la suite (u_n) définie par le terme général $u_n=n^2$. Déterminer les termes suivants :

u_0	u_1	u_2	u_3	u_4	<i>u</i> ₅	<i>u</i> ₆	<i>u</i> ₇

EXERCICE 1A.4

On considère la suite (u_n) définie par le terme général $u_n=\frac{n}{n+1}$.

Déterminer les termes suivants (en écriture fractionnaire) :

1	u_0	u_1	u_2	u_3	u_4	u_5	<i>u</i> ₆	u_7

EXERCICE 1A.5

On considère la suite (u_n) définie par le terme général $u_n=n^n$. Déterminer les termes suivants :

u_1	u_2	u_3	u_4	<i>u</i> ₅	<i>u</i> ₆	<i>u</i> ₇

EXERCICE 1A.6

Soit la suite (u_n) définie par $u_n = (-1)^n$

u_1	u_2	u_3	u_4	<i>u</i> ₅	<i>u</i> ₅₃	<i>u</i> ₇₂	<i>u</i> ₁₄₇

EXERCICE 1A.7

On considère la suite (u_n) définie par récurrence

$$\begin{cases} u_0 = 1 \\ u_{n+1} = 2u_n + 1 \end{cases}$$
 Déterminer les termes suivants

u_1	u_2	u_3	u_4	<i>u</i> ₅	<i>u</i> ₆	u_7	u_8

EXERCICE 1A.8

On considère la suite (u_n) définie par récurrence

$$\begin{cases} u_0 = 7 \\ u_{n+1} = -3u_n + 2 \end{cases}.$$
 Déterminer les termes suivants

u_1	u_2	u_3	u_4	u_5	<i>u</i> ₆

EXERCICE 1A.9

On considère la suite (u_n) définie par récurrence

$$\begin{cases} u_0 = 128 \\ u_{n+1} = \frac{2}{u_n} \end{cases}$$
. Déterminer les termes suivants

u_1	u_2	u_3	u_4	<i>u</i> ₅	<i>u</i> ₆	<i>u</i> ₇	u_8

EXERCICE 1A.10

On considère la suite (u_n) définie par récurrence

$$\begin{cases} u_0 = 2 \\ u_{n+1} = (u_n)^2 - 4 \end{cases}$$
. Déterminer les termes suivants

u_1	u_2	u_3	u_4	<i>u</i> ₅

EXERCICE 1A.11

On considère la suite (u_n) définie par récurrence

$$\begin{cases} u_0 = 2 \\ u_{n+1} = -u_n \end{cases}$$
 . Déterminer les termes suivants

u_1	u_2	u_3	u_4	<i>u</i> ₅	<i>u</i> ₅₀	<i>u</i> ₁₀₁	<i>u</i> ₇₆₄

EXERCICE 1A.12

On considère la suite $\left(u_{n}\right)$ définie par récurrence

$$\begin{cases} u_0 = 2 \\ u_{n+1} = u_n + 3 \end{cases}$$
. Déterminer les termes suivants

u_1	u_2	u_3	u_4	<i>u</i> ₅	<i>u</i> ₅₀	<i>u</i> ₁₀₁	<i>u</i> ₇₆₄

EXERCICE 1A.13

On considère la suite (u_n) définie par récurrence

$$\begin{cases} u_0 = 1 \\ u_{n+1} = 2u_n \end{cases}$$
. Déterminer les termes suivants

u_1	u_2	u_3	u_4	<i>u</i> ₅	<i>u</i> ₁₀	<i>u</i> ₁₅

CORRIGE – Notre Dame de La Merci - Montpellier

EXERCICE 1A.1

Soit la suite (u_n) définie par $u_n = 3n - 7$

u_0	u_1	u_2	u_3	u_4	<i>u</i> ₅	<i>u</i> ₆	u_7
-7	-4	-1	2	5	8	11	14

EXERCICE 1A.2

Soit la suite (u_n) définie par $u_n = 2^n$

u_0	u_1	u_2	u_3	u_4	u_5	<i>u</i> ₆	<i>u</i> ₇
1	2	4	8	16	32	64	128

EXERCICE 1A.3

Soit la suite (u_n) définie par $u_n = n^2$.

<i>u</i> ₀	u_1	u_2	u_3	u_4	<i>u</i> ₅	<i>u</i> ₆	<i>u</i> ₇
0	1	4	9	16	25	36	49

EXERCICE 1A.4

Soit la suite (u_n) définie par $u_n = \frac{n}{n+1}$.

<i>u</i> ₀	u_1	u_2	<i>u</i> ₃	u_4	<i>u</i> ₅	<i>u</i> ₆	<i>u</i> ₇
_	1	2	3	4	5	6	7
U	$\overline{2}$	$\frac{\overline{3}}{3}$	4	<u>-</u> 5	6	7	8

EXERCICE 1A.5

Soit la suite (u_n) définie par $u_n = n^n$

$\begin{vmatrix} u_1 & u_2 & u_3 & u_4 & u_5 & u_6 & u_7 \end{vmatrix}$							823 543
	u_1	u_2	u_3	u_4	<i>u</i> ₅	<i>u</i> ₆	<i>u</i> ₇

EXERCICE 1A.6

Soit la suite (u_n) définie par $u_n = (-1)^n$

u_1	u_2	u_3	u_4	<i>u</i> ₅	<i>u</i> ₅₃	u_{72}	<i>u</i> ₁₄₇
-1	1	-1	1	-1	-1	1	-1

EXERCICE 1A.7

On considère la suite $\left(u_{n}\right)$ définie par récurrence

$$\begin{cases} u_0 = 1 \\ u_{n+1} = 2u_n + 1 \end{cases}$$
 Déterminer les termes suivants

<u>"1</u>	<i>u</i> ₂	3	31	<i>u</i> ₅	"6	/	"8
u_1	11 -	u_2	и.	11 _	и.	u_{τ}	11.0

EXERCICE 1A.8 On considère la suite (u_n) définie

par récurrence
$$\begin{cases} u_0 = 7 \\ u_{n+1} = -3u_n + 2 \end{cases}$$

EXERCICE 1A.9 On considère la suite (u_n) définie

par récurrence
$$\begin{cases} u_0 = 128 \\ u_{n+1} = \frac{2}{u_n} \end{cases}$$

u_1	u_2	u_3	u_4	<i>u</i> ₅	<i>u</i> ₆	<i>u</i> ₇	u_8
$\frac{1}{64}$	128	1 64	128	$\frac{1}{64}$	128	1 64	128

EXERCICE 1A.10 On considère la suite (u_n)

définie par récurrence $\begin{cases} u_0 = 2 \\ u_{n+1} = (u_n)^2 - 4 \end{cases}$

0	-4	12	140	19 596
u_1	u_2	u_3	u_4	<i>u</i> ₅

EXERCICE 1A.11 On considère la suite (u_n)

définie par récurrence $\begin{cases} u_0 = 2 \\ u_{n+1} = -u_n \end{cases}$

<u>"1</u>	<u> </u>	-3 -2	2	2	"50 2	101	764
u_1	u_{2}	u_2	u_{Λ}	u_{ε}	u ₅₀	u_{101}	u_{764}

EXERCICE 1A.12 On considère la suite (u_n)

définie par récurrence $\begin{cases} u_0 = 2 \\ u_{n+1} = u_n + 3 \end{cases}$

<i>u</i> ₁	u_2	u_3	u_4	<i>u</i> ₅	<i>u</i> ₅₀	<i>u</i> ₁₀₁	<i>u</i> ₇₆₄
5	8	11	14	17	152	305	2 294

EXERCICE 1A.13 On considère la suite (u_n)

définie par récurrence $\begin{cases} u_0 = 1 \\ u_{n+1} = 2u_n \end{cases}$

<i>u</i> ₁	u_2	u_3	u_4	<i>u</i> ₅	<i>u</i> ₁₀	<i>u</i> ₁₅
2	4	8	16	32	1 024	32 768